

You’ve spent months designing a stunning WordPress site and working
with clients and collaborators to create something truly special. Now
you’ve launched it to the public, and yay! You’re all done. But, wait...it’s
kind of slow. You know that site speed is crucial to the success of your
business (and that of your client’s). Time and time again, you’re hit over
the head with scary statistics like “nearly half of web users expect a site
to load in 2 seconds or less,” and “users tend to abandon a site that isn’t
loaded within 3 seconds.”

It’s easy to feel frustrated at this point in the project, but don’t fret.
Before you knock down the door of your web host or add a ton of sketchy
plugins, follow these easy steps to make your WordPress site smooth,
solid, and super speedy.

Step 1: Test!

Before you get started, it’s important to take some measurements and
run a few tests to get some benchmarks, so you’ll know if the changes
you’re making are actually improving your site.

To test the speed of your site, your best bet is a combination of
WebPageTest and Google PageSpeed Insights. WebPageTest gives you
a good idea of the actual time (in seconds) that a site takes to load, and
these metrics will help you know whether it’s the back-end or front-
end causing a site to load slowly. Google PageSpeed Insights is best for
looking at how your site is rendered by the browser and can help you
identify what you can improve on the front-end.

Step 2: Make sure you’ve got the best host

The price tag of shared hosting always makes it seem like a bargain,
but it comes at a different cost: slow site speed, irregular performance,
and frequent downtime. The stress isn’t worth it, especially when you
have the ability to choose a managed WordPress host (like Flywheel!)
that’ll take care of a huge chunk of your WordPress performance woes.
With Flywheel, support is top-notch, the dashboard is beautiful and
easy-to-use, your site will stay secure, and you’ll have a whole plethora
of features at your disposal. When it comes to hosting, you don’t want
to mess with last-minute migrations, hacked sites, sub-par servers, and
unexpected downtime at the most important times.

Step 3: Audit your plugins

The addition of plugins to a site can bring a lot of functionality and fun
stuff that makes your site far beyond basic. Unfortunately, many bring
a performance overhead with them. We’ve seen so many slow sites that
are immediately cured just by deactivating a few plugins. The best way
to avoid a migraine from managing plugins is to keep performance in

http://www.webpagetest.org/
https://developers.google.com/speed/pagespeed/insights/

mind as you are developing your site. You don’t want to spend weeks
relying on a plugin, only for it to become the bane of your existence when
you find out it makes your site extremely slow. Read reviews, test them
regularly, and be sure you’re updating them to the latest version when
it’s available.

All this negative talk about plugins is only to make you aware of the
potential risks involved when using bad ones. These are usually plugins
that are developed by inexperienced programmers or those that make a
ton of database queries and require intensive logic processing. However,
there’s good news! There are thousands of worthwhile plugins that don’t
make your users and readers frustrated when they crawl around your
site. The magic trick is just to use those, and not the slow-performing
ones.

You can track down which plugins might be causing performance losses
on your site quite easily. We generally use a plugin called P3 Profiler that
sifts through your whole site and reports back what percentage of total
load time each plugin is responsible for using. If you’re serious about
speed, you’ll run a P3 Profiler test each time you activate a new plugin,
to ensure you’re not installing something that will sacrifice speed. Plus,
by benchmarking your plugins right off the bat, you won’t waste time
messing with a plugin if it’s not going to perform well in the long run.

If there are plugins that you just can’t live without but still make your site
slow, there are ways to continue using them. Generally, if you determine
that a plugin is loading slowly, the next step is to increase the memory
on your server. With Flywheel, that generally means upping your plan to
the next level to get more memory and, thus, more speed. Eliminating
the need to do this is the best plan of action, but there probably are
a handful of plugins that you might find yourself not willing to ditch
(WooCommerce, for example).

https://wordpress.org/plugins/p3-profiler/

Step 4: Cache everything

Caching, both on the server side and client side, is an important part of
WordPress site performance. Once a user loads your site for the first time,
you can take advantage of browser capabilities to cache the contents of
that site locally, so on the next visit the user already has them loaded.

Similarly, on the server side, having a caching layer works wonders for
serving your site up very quickly. The most common way to cache server-
side with WordPress is by using the W3 Total Cache plugin. This plugin
(or one similar) is needed on almost all hosts. The exception to this rule
is Flywheel; we handle server-side caching for you behind the scenes
with Varnish. Using Varnish instead of a plugin can increase speeds
dramatically because Varnish never has to talk to PHP. It serves up
cached static copies of your site immediately (without even touching the
PHP application layer), whereas plugins are still run by PHP.

On managed hosts like Flywheel, the server-side caching tells the
browser how long to cache things by setting ‘expires headers’. The
browser won’t ask the server for more information if those headers
tell it not to ask. You mainly have to start thinking about caching when
you start installing plugins or third-party themes. Theme and plugin
developers can set their own headers that can override your host’s
default settings, aversely affecting the caching mechanisms.

WooCommerce, for example, disables server-side caching by setting
cookies. It’s typically not very apparent when plugins or themes disable
caching, so a good thing to do is reach out to your hosting provider and
ask that they force cache your site. Be careful not to force caching on
pages that truly need cookies to work, though, such as WooCommerce
cart and checkout pages.

https://wordpress.org/plugins/w3-total-cache/

Step 4: Use a CDN

A content delivery network (or CDN) is a network of servers that serves
up your website and its assets from different locations based on the
user’s location. For example, let’s say you’re not using a CDN and your
site is hosted in San Francisco. When someone from, say, Barcelona visits
your site, they have to retrieve all your assets from your server in San
Francisco. The long distance between the two locations clearly takes
longer than if someone from San Francisco loads your site that’s hosted
in San Francisco. A CDN serves your assets from a bunch of different
servers based in New York, Seattle, Omaha, Paris, London, Beijing
AND San Francisco (and many more). The idea is that users will hit the
server closest to them and not sacrifice load time since there’s a smaller
distance between them and the server. With a CDN, that same person
from Barcelona will now hit a datacenter in London or Paris, instead of
San Francisco. Using a CDN will definitely increase the speed of your site
for users throughout the world!

Some of the most popular CDNs include Amazon Web Services,
CloudFlare, and MaxCDN. Most of them have free plans, but if you pull a
lot of visitors and have lots of assets, you’ll most likely have to pay for a
CDN. They’re typically easy to set up, but if you want a super easy setup
solution, you should check out Flywheel’s MaxCDN add-on.

Step 5: Downsize your static assets

There’s some work to be done with static assets prior to uploading them
to your server to serve to browsers. This work essentially comes down
to compression and minification. You always want to serve the fewest
amount of assets possible, compressed as much as you can, in order to
make your site as fast as possible.

https://aws.amazon.com/
https://www.cloudflare.com/
https://www.maxcdn.com/

Images
Images are often the biggest files on a page, responsible for the largest
delay in page load time. However, the good thing about images is that
unlike CSS and JavaScript, most browsers load them asynchronously.
That at least helps with the perceived performance of a page, but you
still want to make sure that a.) you’re serving as few images as possible
and b.) those images are compressed as much as possible.

Compression tools are necessary for squeezing out as much excess
as possible on images. ImageOptim is a great Mac app that does this
well, along with OptiPNG and jpegtran for use with task runners like
Grunt. TinyPNG is the go-to web-based compression tool. It can become
cumbersome doing this with every image, though, and sometimes not
even feasible if multiple people are contributing content. Thankfully,
there are some WordPress specific tools available to help with this.

When you have multiple sizes of images that are cropped upon
upload (usually defined in most themes), using an image compression
WordPress plugin is particularly important. Even if the initial image
that you uploaded is as trimmed and compressed as possible, when
WordPress generates the new images from that, those won’t be
compressed.

We have used and recommend TinyPNG for WordPress and Ewww
Cloud Optimizer to handle the compression and optimization of images
uploaded to WordPress.

CSS
The most important thing to do with your CSS before it’s delivered to the
browser is simply to compress it and remove unused selectors. Getting
a good development workflow down when developing themes makes
this process trivial, especially if you’re using a pre-processor like Sass.
We’d recommend Grunt, which is a JavaScript task runner that executes
commands for you while developing. There’s a plugin for Grunt called
grunt-contrib-sass that simply compiles all your Sass files down into one,
minifies it, and compresses it. Throw in the grunt-contrib-watch plugin
on top of that, and it will run the Sass task whenever you save a file.
Easy!

https://imageoptim.com/
http://optipng.sourceforge.net/
http://jpegclub.org/jpegtran/
https://wordpress.org/plugins/tiny-compress-images/
https://wordpress.org/plugins/ewww-image-optimizer-cloud/
https://wordpress.org/plugins/ewww-image-optimizer-cloud/
http://gruntjs.com/
https://github.com/gruntjs/grunt-contrib-sass
https://github.com/gruntjs/grunt-contrib-watch

Don’t lose sleep if you’re not using the latest and greatest CSS
methodology, but try to follow some sort of standard while authoring
CSSto avoid duplication and huge file sizes.

JavaScript
The golden rules of optimizing JavaScript are simple: Serve as few
JavaScript files as possible, minify, and concatenate. Third-party
WordPress plugins can be detrimental by bloating your document with
unminified blocking JavaScript files, so it’s important to be mindful
when choosing plugins. Ideally, you’d concatenate ALL JavaScript files
into one and then minify the heck out of it. For times when it’s not
possible to concatenate all your files into one, there are HTML attributes
called “async” and “defer” that can be used to load JavaScript files
asynchronously or once the rest of the page is loaded.

Step 6: Take care in writing your theme logic

There are many things you can do from a theme development
perspective to make your back-end performance as high as possible.
Nasty loops that do tons of comparisons and use lots of memory (if, if, if,
else, if, else, so on) can definitely slow down the loading of a page, as all
that logic takes time. There are lots of articles on performant PHP, but
our best advice is to just take care in writing your theme logic!

One tool that has saved us from a logic intensive loop taking forever to
load is the Transients API. WordPress transients store cached data in
the database temporarily, which means your logic only has to run once
(whenever the first visitor loads the page) and then the results of that
are stored in the database. The Codex has good documentation on the
usage of transients, as well as a host of other articles found with a Google
search.

https://codex.wordpress.org/Transients_API
https://codex.wordpress.org/

Step 7: Serve up assets on a silver platter

How you serve up static assets like images, CSS, and JavaScript is critical
to the way your site loads.

CSS
Once your stylesheet is compressed and ready to go, the easiest (and by
far, the standard) way to load it is to just reference it in the <head>. That
way, the browser loads and parses it before the rest of the DOM is loaded.

However, there’s a fairly new technique where “critical” styles are inlined
in the <head> and then the full stylesheet is loaded asynchronously using
JavaScript. Critical styles are defined as those that are needed to paint
everything that the user first sees (“above the fold”) when they initially
load your page. The best way to grab critical styles from a page is by
using Grunt (or another task runner) paired with a task like grunt-critical
or grunt-criticalcss. The Penthouse web generator is also a solid way of
extracting critical styles.

Once you have the critical CSS ready, it’s as simple as inserting it into a
<style> tag in the head.

https://github.com/bezoerb/grunt-critical
https://github.com/filamentgroup/grunt-criticalcss
https://jonassebastianohlsson.com/criticalpathcssgenerator/

Now to get the full stylesheet loaded, a JavaScript loader like loadCSS is
required. The Filament Group has a much more extensive article on using
this technique, including examples with loadCSS.

JavaScript
The most common place nowadays to reference JavaScript is at the
bottom of your document, right before the closing tag. However, there
are more advanced techniques to load JavaScript. Again, the Filament
Group has done tons of research on this and has several open source
projects that you can use if you’re aiming for a super fast page load time
(we’re in no way affiliated with Filament Group, by the way; we just
think their stuff is awesome). The best approach seems to be to load
scripts dynamically by inlining a small function in the <head>; that then
appends script tags without blocking the rest of the page. For more
information, check out the loadJS script.

After you’ve gone through these performance-enhancing practices, if
your site is still really slow, we’d recommend hiring a developer who can
look into it and find the source of the problem and/or choosing a new
WordPress host.

https://github.com/filamentgroup/loadCSS
https://www.filamentgroup.com/lab/performance-rwd.html
https://www.filamentgroup.com/lab/performance-rwd.html
https://github.com/filamentgroup/loadJS

What’s Flywheel?
Flywheel offers WordPress hosting and site management tools for designers

and agencies. Flywheel’s simple collaboration tools, built-in staging sites,

robust architecture and WordPress specific support team allows agencies to

save time and launch more projects.

Stop wasting time on server management, security plugins, caching, and all

those other boring repetitive tasks that take your focus away from growing

your business and jeopardize your relationship with clients. Get Flywheel and

get back to doing what you love.

Contact Sales
hello@getflywheel.com
(888) 928-8882

Or, sign up at getflywheel.com

